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Abstract. In this article we propose a model of spin-phonon relaxation in 
K6[VIV

15As6O42(H2O)]·8H2O, the so called V15 cluster exhibiting the unique layered magnetic 
structure. The work is motivated by the recent observation  of the Rabi oscillation [1] in this 
system and aimed to elucidate the role of spin-phonon interaction as a source of decoherence.  
The spin-phonon coupling is assumed to appear as a result of the modulation of the isotropic 
and antisymmetric (Dzyaloshinsky-Moriya) exchange interactions in the central triangular 
layer  of vanadium ions by the acoustic lattice vibrations. The relaxation rates are estimated 
within the Debye model for the lattice vibrations. Within the pseudo-angular momentum 
representation the selection rules for the direct (one-phonon)  transitions between Zeeman 
levels are derived and a special role of the antisymmetric exchange is underlined. The 
probabilities of  the  two-phonon Orbach-Aminov type processes are evaluated as well, while 
the Raman type relaxation is shown to have a negligible importance at low temperatures at 
which the Rabi oscillations have been detected.  
 
Keywords: molecular magnetism, cluster V15, exchange interaction, antisymmetric exchange, 
spin-phonon relaxation, spin frustration, coherence/decoherence 

 
1.   Introduction  
During the last two decades quantum computing became one of the most promising  disciplines  lying 
on the border of computer science,  quantum  physics and  theory of information. The main idea  is 
that if some quantum system has (at least) two quantum states 1  and 2 , not only these two pure 
states may be interpreted as information storage bits “0” and “1”,  but any superposition of them is 
also a carrier of information. Unlike its classical counterpart, this quantum information unit, or 
quantum bit (qubit)  possesses intrinsic parallelism  due to which  quantum computation promises 
efficient  algorithms which are not realizable  on  the classical computers [2]. However 
implementation of quantum computing is threatened by the decoherence, when the memory content of 
a qubit is lost due to its interaction with the environment (thermal bath, intercluster interaction or/and 
hyperfine spin-spin coupling). In order to successfully encode and process information  the time of 
decoherence must  be sufficiently long and, at least, not shorter than duration of the gate logical 
operation. This statement allows mentioning the central problem in the realization of quantum 
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computing: to elaborate quantum  system with a long coherence time. The first quantum logic gates 
have been already successfully realized on the trapped cold ions [3, 4]. The microscopic spins in  
quantum dots [5], semiconductors [6] and doped fullerenes [7] were also intensively studied as 
possible qubits.   

 A decade ago Leuenberger and Loss [8] proposed molecular magnets as  promising candidates for 
the use as nanoscale qubits.  In this respect it is to be mentioned that molecular magnets have a 
number of vitally important advantages: (a)  unlike quantum dots  the molecular magnets of a 
specified chemical composition  are strictly identical and therefore have identical physical 
characteristics ( energy levels, g-factors, magnetic exchange parameters, etc.); (b) by a proper 
chemical synthesis the magnetic clusters  can be engineered to have desired   physical characteristics 
that can be controlled by the  due choice of the metal ions, ligands, etc. Moreover, in this way the main 
sources of decoherence (like the dipolar coupling and  spin-nuclei interaction)  can be suppressed by 
the chemical means.  [1, 9, 10];  (c)  Molecular magnets are relatively large (but still nanoscale!) 
objects, (as compare to single ions)  and thus much  easier for the  individual addressing while 
processing the  information; (d)  magnetic molecules can be attached to different types of platforms by 
grafting individual  clusters on solid surfaces [11-14],  grafting monolayers [15-17] or embedding the 
isolated molecules in the amorphous media [1, 10]. This is expected to provide a firm stable  structure 
in opposite to fragile and expensive apparatus for ion trapping. 

The key question regarding molecular magnets as possible qubits was formulated by Winpenny et 
al. (see [9]): “will coherence times in molecular magnets permit quantum information processing?” A 
number of approaches  for implementation of molecular magnets as qubits were proposed [8, 18-23] 
and the existence of the  long living coherent states in different kinds of molecular magnets [1, 9, 23-
27] have been predicted. The long phase-decoherence time  in the heterometallic wheels 
was reported in [9]. The understanding of the significant importance of molecular magnets as possible 
qubits  gave a strong impact on the study of the decoherence mechanisms, especially, spin-lattice and 
spin-spin interactions in molecular magnets [27-31]    

2T MCr7

 

                                                         
                                                       Figure 1. Ball-and-stick representation  
                                                       of the cluster anion [VIV

15As6O42(H2O)]6–    

                                                       emphasizing the V3 triangle (the central  
                                                       water molecule is not indicated) [32]. 
 

A possibility of the long living coherent states in V15 have  been theoretically predicted by 
Dobrovitski et al. [27] on the basis of the estimation of the characteristic times related to different 
mechanisms of decoherence. In fact, later on the existence and interpretation of the long-living 
coherent states  was demonstrated by the first observation of the Rabi oscillations in the molecular 
magnet  K6[VIV

15As6O42(H2O)]·8H2O, hereafter – V15 cluster [1].   
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The unique cluster V15   containing fifteen  VIV ions (Si=1/2) and exhibiting layered structure was 
discovered more than two decades ago by Müller and Döring [32] and the first studies of this system 
date back to this period [32-35]. The metal skeleton of the V15 cluster has a distinct layered quasi-
spherical structure [32, 33] in which fifteen magnetic VIV ions ( 21=is ) are placed in a large central 
triangle sandwiched by two distorted hexagons  possessing overall D3 symmetry (figure 1). The 
studies of the static magnetic susceptibility [34-37], energy pattern [38-43], ab initio electronic 
structure calculations [44-48] and inelastic neutron scattering [49, 50] showed that the low lying part 
of the  energy spectrum is well isolated from the remaining spin levels and can be understood as a 
result of interaction between three moieties consisting of five strongly coupled spins (two almost 
paired spins from each hexagon coupled to a spin of the triangle) giving rise to spin S =1/2 of each 
moiety. The twenty-year  studies of V15  cluster have been recently reviewed in [51]. 

In their study of the decoherence in molecular magnets  the authors of [27] compared the dipole-
dipole and spin-lattice relaxation times and according to their  estimations  the first was shown to be a 
dominant mechanism. The theory of spin-lattice relaxation in [27]  had been based on a semiempirical 
model that led to a general estimations of some characteristic  relaxation times . In this article we 
attempt to develop a microscopic  model of spin-lattice interaction in V15   that takes into account 
isotropic and anisotropic exchange interactions and based on the accurate consideration of the spin 
states and  Zeeman levels of V15  and on a simplified Debye model for the acoustic lattice vibrations. 
We consider  direct (one-phonon) and two-phonon Raman and Orbach-Aminov type processes in 
order to estimate the relaxation rates  and to reveal the importance  of spin-phonon relaxation as a 
source of the decoherence in the V15  system.  
 
2. Triangle  model  for V15  cluster 
The model of spin triangle for the low lying spin excitations suggested in [34,35]  includes the 
isotropic Heisenberg-Dirac-Van Vleck (HDVV) exchange interaction and the antisymmetric (AS) 
exchange proposed by Dzyaloshinskii [52] and Moriya [53] (see also [53-57]) as an origin of spin 
canting in magnetic materials.  The last interaction was shown [57-62] to be especially important for 
the spin frustrated system possessing triangular structure. It was shown that the spin of hexagons are 
paired due to relatively strong antiferromagnetic interactions while the coupling inside the triangle is 
relatively small. That is why the model of an effective spin triangle of vanadium ions ( 21=S ) 
belonging to the central triangle provides an adequate description of the whole system at low 
temperatures.  This triangular vanadium magnetic layer in the V15 structure is shaded in figure 1.  
Three spins of the central triangle are coupled through the antiferromagnetic  isotropic exchange.   The 
full Hamiltonian of the system in the external magnetic field looks as: 

 
( ) [ ] ,2

,
133210 ∑ +×+++=+≡

ji
jiijAS gJHHH SHSSDSSSSSS μ                                     (1)                                

where for the sake of simplicity the Zeeman interaction is assumed to be isotropic. The eigen-values of 
the Hamiltonian  with the antiferromagnetic ( ) coupling include two levels, namely, two 
“accidentally” degenerate spin doublets (ground manifold) and excited spin quadruplet separated by 
the gap . According to the overall point symmetry D

0H 0>J

J3 3 the vector  constants (  

numerate the sides) of the AS exchange  have, in general,  three independent components: along and 
perpendicular to the side   (in plane of the triangle)  and   perpendicular to the plane component whose  
absolute values  are ,  and  respectively. Consequently the Hamiltonian  can be divided 

into two parts,   (“normal”) and 

ijD 31,23,12=ij

lD tD nD ASH

( )||ASH ( )⊥ASH  (“in-plane”) which are defined as: 
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[ ] [ ] [ ] [ ] [ ] ⎟⎟
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⎝
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×−×+×−×−×+ YXYXYtD 1313323221 2

1
2
3

2
1

2
3 SSSSSSSSSS                                        (3)           

 

where axes  X  and  Y  of the global coordinates system are in the plane (figure 3)  while the axis Z  
is perpendicular to the plane. These two parts of the AS exchange  are explicitly separated as they play 
quite different physical roles. The normal part of AS exchange splits the ground 21=S doublets into 
two Kramers doublets and gives rise to a strong (first order) magnetic anisotropy while the in-plane 
part is responsible for the doublet-quadruplet mixing. This mixing leads to the second order zero-field 
splitting of the 23=S  level (that is ( ) JDD tl 822 + ). It was shown [59]  that   and  are 

combined into an  effective parameter 

lD tD
22
lt DDD +=⊥  so  the  exchange model  is  fully specified  

by the  three  parameters  ,  and  (see Section 7 for the numerical estimations).   J nD ⊥D
 
3. EPR  transitions 
The analysis of the energy pattern of the system shows  that the ground term is represented by the 
orbital doublet  2E (S=1/2) while the excited level is the orbital singlet ( )232

4 =SA . This allows to 
find out  the  selection  rule  for  the  EPR  transitions and to  reveal  the  role of  the AS exchange. The  
 
 

                                      

                           Figure 2. Allowed EPR transitions (low frequency range),   3||CH
                            (solid arrows); allowed one-phonon transitions caused by the  modu- 
                             lation of the isotropic exchange (dashed arrows),  see Section 5.        
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component  of the AS exchange splits the ground manifold ( )||ASH 2E (S=1/2)  while   in-plane 
component   of the AS exchange mixes the ground and excited levels and gives rise to a zero-

field splitting of the excited 

( )⊥ASH

( 232
4 =SA ) level.   At low magnetic fields  the effects of the  in-plane 

component   of the AS exchange are negligible due to the relatively large gap ( )⊥ASH J3 .  Then, if  

the field is parallel to the  axis the energy levels may be labeled by  following quantum numbers: 

the projection  of the orbital pseudo-angular momentum,  the spin projection  and the full 

angular momentum projection 

3C

LM SM

SLJ MMM +=  [51,59,62]. Consequently, if  is neglected, 

the EPR transitions satisfy the selection rules 

( )⊥ASH
0=Δ LM , 1±=Δ SM , 1±=Δ JM [62]. There are five                     

allowed transitions:  two between the Kramers doublets and three within the excited quadruplet (figure 
2). If the effects of   are taken into account, then   and   are no longer “good” 

quantum numbers  and the selection rule is now  

( )⊥ASH LM SM
1±=Δ JM . This  allows for a  number of additional 

EPR transitions  which are, however, weak (their intensities are related to the degree of the 
intermultiplet mixing through the ( )⊥ASH ) and may have importance  only near the crossover points 

of the Zeeman sublevels.  In terms of the quantum numbers  ,  and    in Sec. 5 we will 
consider the selection rules for the one-phonon transitions.  

LM SM JM

 
4. Spin-phonon  interaction 
The interaction of spins with the lattice vibrations (heat reservoir) is assumed to arise from the 
modulation of the isotropic and AS exchange interactions by the molecular displacements  
(  enumerates the ions) in course of the lattice vibrations [57, 58, 63]. It is convenient to deal 
with the symmetry adapted coordinates   (

iii ZYX ,,
3,2,1=i

αQ α  enumerates the vibrational mode)  of  the  equilateral  
 

 
 

Figure 3.   Vibrational  coordinates  of  a symmetric  triangular unit. 
 

triangular unit: full symmetric ( )AA QQA ≡
11  and double degenerate E type . 

These normal coordinates can be expressed in terms of the Cartesian displacements  of the 
constituent ions as following: 

( ),Ex x Ey yQ Q Q Q≡ ≡

iii ZYX ,,

 

  

( ) ( )

( ) ( )

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ++−−=
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⎡ −−++=
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⎤
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2
13

2
1

3
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A

                                                                         (4) 
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The displacements corresponding to these coordinates are shown in figure 3.  Within the mentioned 
mechanism of spin-phonon interaction the exchange parameters are assumed to be the functions of the 
metal-metal distances  so that the linear (with respect to the displacements) terms of the vibronic 

Hamiltonian    can be represented as a sum of two contributions 
ijR

υeH ,υυυ eee HHH ′′+′=  where υeH ′  

and  are related to the isotropic and AS parts of the original Hamiltonian respectively:   υeH ′′
 

 α
α α

υ

α

Q
Q
H

H
QYXA

e
0,,

0

=
∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=′ ,                                                                                                             (5)                         

 
.

0,,
α

α α
υ

α

Q
Q

H
H

QYXA

AS
e

=

∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

=′′
                                                                                                             (6)   

                                                                     
After substitution of the corresponding parts of the exchange Hamiltonians one obtains the following 
expressions for the spin-phonon coupling operators: 
 
 

( )
∑ ∑ ∂

∂
⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
=′

=Δ=ij

ij

YXA ij

ijij
jiev Q

Q
R

R
RJ

H
ijR

α
αα 0,,

2 SS                                                                           (7)                           

 

[ ] ( )
∑ ∑ ∂

∂
⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

×=′′
=Δ=ij

ij

ij

ijij
ji

YXA
ev Q

Q
R

R
R

H
ijR

α
αα 0,,

D
SS                                                                     (8)                          

 

Here  are the instant  metal-metal distances in course of the vibrations (ijR 0=Δ ijR  corresponds to the 
equilibrium trigonal configuration and symmetric exchange network with the sides R0 ). Modulation of 
the isotropic exchange can be described by the parameter λ  which is defined as  

( )( 06 ijijij RRJ ∂∂≡λ ) . For each side of the triangle there is also vector coupling parameter which 

related to AS exchange and defined as ( )( )
0ijijijij RR ∂∂= Dβ . Due to trigonal symmetry of the 

system the absolute values of these three vector parameters have the same value β  for each side of 
the triangle. One can define also the three components of , namely, the normal part  and 

the two perpendicular contributions 
ijβ ijnn ββ =

ijtt ββ =  and ijll ββ =   where the symbols l and t have the same 

meaning as in the definition of the AS  exchange Hamiltonian. One can also define a combined 
vibronic parameter 22

lt βββ +=⊥ that  appears  in the final results. 

After calculation of the derivatives αQRij ∂∂ (using the relations between the Cartesian 

displacements   and normal coordinates , figure 3) one arrives at the following form of 
the  spin-vibronic Hamiltonians: 

iii ZYX ,, αQ

 

                                                                                                                        (9)                         
,.QŴH

,QV̂H

e

e

∑

∑
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Γ
ΓΓ
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γ
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Here 
YX EEA ,,1=Γγ  label the irreducible representations and basis functions of the D3 symmetry 

group and the operators   (related to the isotropic part of the Hamiltonian) are expressed in terms 
f the scalar products of spin operators: 

γΓV̂
o  

  

( )

( )

( ) .
2

1ˆ

,2
6

1ˆ

,
3
2ˆ

1332

11332

1332211

SSSS

SSSSSS

SSSSSS

−=

−+=

++=

Y

X

A

V

V

V

                                                                                               (10)                           

The operators (related to the modulation of the AS exchange) are expressed  in terms of the vector 
ducts of spin operators as follows: 

γΓŴ
pro     

                         
[ ] [ ] [ ]

[ ] [ ] [ ]( )

[ ] [ ]( ) .Ŵ

,Ŵ

,Ŵ

Y

X

A

13313223

133132232112

133132232112

2
3

2
2
1

SSeSSe

SSeSSeSSe

SSeSSeSSe

×−×=

×−×+×=

×+×+×=

                                                                       (11) 

 

where   are  the unit vectors ije ijij ββ . The evaluation of the vibronic matrices was performed with 

the aid of the irreducible tensor operators  approach  [57, 58, 64-67].  
   
5. One-phonon  relaxation 
In order to take into account the interaction of spins with the acoustic lattice vibrations, the symmetry 
adapted molecular displacement  should  be  expanded  into  series  of  the  longitudinal (l) and 
transverse (t)  acoustic  lattice  vibrational  modes  specified by  the wave vector and 

polarization . We will also use a short notation 
pqκ κ

tlp ,= ( )pκ=ξ  unless we have a special need to 
address any of them. Then one can obtain the following expression for the spin-phonon Hamiltonian: 
 

 ( ) ξ
γ ξ

ξ
ξ

γυ γ
ω

qa
M

ĜHe Γ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=∑ ∑

Γ
Γ

21
h

                                                                                       (12)                           

 

Here the matrix γΓĜ  is defined as γγγ βλ ΓΓΓ += ŴV̂Ĝ ,  are the dimensionless normal 

coordinates of the lattice, 
ξq

M  is a mass of crystal and ( )γξ Γa  are the so called Van Vleck 

coefficients introduced in his underlying theory of paramagnetic relaxation [68].   
Since we are  dealing  with  the transitions between the levels belonging to the ground manifold of  

V15 separated by the gaps of a few , (Section 7) it is sufficient to use the long-wave 
approximation for the Van Vleck coefficients of the triangular unit: 

1−cm
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( ) ( ) ( )
( ) ( ) (
( )

)
( ) ( )xyyxY

yyxxX

yyxx

ppREa

ppREa

ppRAa

κκ

κκ

κκ

−−=

−−=

+=

0

0

01

21

21

21

κ

κ

κ

                                                                                                  (13)                          

 

where  iκ ,   are Cartesian components of  the wave-vector and polarization vector and   is V-V 
distance  in  the vanadium triangle. It is to be noted that the spin-phonon Hamiltonian, Eq. (12), is 
adapted to the triangle model for V

ip 0R

15.  In fact,   by definition the matrices   in this Hamiltonian act 

within the set of eight spin functions (two 
γΓĜ

21=S   doublets and quadruplet 23=S ) of  the 
vanadium triangle.   

In the case  of   two  non-degenerate  electronic states  m′  and  m   separated by the energy gap  

 the probability of the one-phonon transition  0' >−=Δ mm EEE mm ′→    is given by            
 

( EnmHnmw e Δ−′′= ωδ )π
υσ h

h

2
,,2

                                                                                            (14)                          

where ,........., σnn =  and  ,.....n....,n 1±=′ σ  . Using equation (12) for the spin-vibronic 

Hamiltonian one sees that the matrix element in (14) is  the following: 
 

( ) 1ˆ,,
21

±′Γ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=′′ Γ

Γ
∑∑ σξσγ
γ ξ

ξ
ξ

υ γ
ω

nqnmGma
M

nmHnm e
h

                                        (15)    

The squared Van Vleck coefficients  ( )γκ Γ=Γ⎟
⎠
⎞⎜

⎝
⎛ 22

pp ab κ   averaged over polarization directions and  
directions of  the wave-vectors are found as 
 

( ) ( )

( ) ( ) 2
0

222
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2
1
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2
0
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1

2
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1
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1,
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2
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κκ

κκ

==

==
                                                                              (16)     

 
We use also a short notation:   
 

( ) ( ) ( )Γ+Γ=Γ 222
tl bbb κκκ                                                                                                                     (17) 

Using the expression for the density of states ( )
( ) 32

2

2 υπ
ωω Vf =  (V  is the volume of crystal, υ  is the 

mean sound velocity) and orthogonality of the Van Vleck coefficients one obtains the full probability 
 of system’s transition from  ( )1

mm
w

′→
m′  to  m  with emission of a phonon of the  resonance  

frequency hEΔ=ω :    
                     

( ) ( )
( ) ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′Γ

−
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Γ
Γ′→

γ
γκω

ω
ρυπ
ω 22

3
1

1
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mm h

h

h
                                               (18)                         
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where ρ  is a crystal density and υυωκ hEΔ==  in the long-wave approximation so far 
employed. Using  equations (16) and (17) one arrives at the  following result which is specific just for 
a triangular unit:                                               

( ) ( )
( ) mmmm

B
kT

kTR
w ′′→ −

= 3
5

2
01

1/exp
/exp ω

ω
ω

ρυπ h

h

h
,                                                                             (19)    

where      
                         

222 ˆ
60
7ˆ

60
7ˆ

20
3 mGmmGmmGmB YXAmm ′+′+′=′                                                     (20)                          

 
The one-phonon relaxation time is thus: 
 

mmmmD ww ′→→′ +=τ1  . 
 

If  the in-plane part   of AS interaction is neglected, the eigen-functions are given by the 
vectors   , , specified by  the spin-projection  as well as by the pseudo-angular 

momentum quantum numbers and  (Section 3).  This vector set can be referred to as  “pure” 

basis (Appendix). The    part of  the Hamiltonian causes mixing of  the “pure” basis vectors  
that is  quite negligible except of the levels crossover fields [51,59-62]. The matrix  in the “pure” 
basis  is given in Appendix. The entries of matrix  in the “pure” basis  refer  to the strongest direct  
transitions which  will be referred to as  “first type” transitions.  

( )⊥ASH

ie 8,,1L=i SM

LM JM
( )⊥ASH

B
B

        
                                         

 

                      Figure 4.  One phonon transitions  caused by the phonon modulation  of 
the normal part of the AS-exchange  (left) and in-plane AS-exchange (right), . 3CH ||

 
Most of the first type transitions originate from the phonon-modulated AS exchange rather then 

from  the modulated isotropic interaction. Indeed  the modulation of the isotropic exchange produces 
only two first-type transitions within the 21=S  manifold (figure 2); these transitions obey the 
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selection rules . Selection rules for the first-type transitions emerging from the 

acoustic modulation of the normal AS exchange component  are: 

2,0 ±=Δ=Δ JS MM

( )||ASH
,1±=Δ LM ,0=Δ SM 1±=Δ JM  (figure 4, left).  First-type transitions emerging from the acoustic 

modulation of the in-plane AS exchange component ( )⊥ASH  are shown in the figure 4, right. One can 
see that the most of the transitions originate from the spin modulation of  the components of AS 
exchange rather then modulation of the isotropic exchange. Another important observation is that the 
first-type transitions within  the 23=S  quadruplet are forbidden.  

When the level mixing by the in-plane AS exchange Hamiltonian  is taken into 

consideration, the  and   are no longer  “good” quantum numbers  and the selection rules 

should be formulated in terms of the  total angular momentum projection  . Then  the selection 

rules for the acoustically modulated isotropic exchange is now 

( )⊥ASH

LM SM

JM
2±=Δ JM  (quadrupole type of 

transitions) and for the modulated normal component ( )||ASH  is 1±=Δ JM  (dipole type transitions).  

Selection rules for the modulated  in-plane component  ( )⊥ASH   become also less strict. This gives 
rise to emergence of  additional very weak “second type”  transitions  whose probability is at least two 
orders smaller then that for  the first-type relaxations.  
 
6. Two phonon  Orbach-Aminov relaxation 

   Since in the one-phonon transitions the density of the phonon states at the resonance frequencies is 
small, an important rule play the two-phonon relaxation processes. These are the Raman processes and 
the Orbach-Aminov type processes [69-73]. Due to the fact that the excited levels corresponding to the 
unpaired spins of the hexagons in V15  are higher then the Debye energy, the levels of the central 
vanadium triangle contribute significantly  to  the second order relaxation. That is why one can expect 
that only the  resonant Orbach-Aminov type relaxation is actual for the V15 system at the relatively low 
temperatures corresponding to the actual EPR measurements. The Raman processes become important 
only at high temperatures. Later on we will derive general expressions adapted to the V15 system. 

Let us consider now  the two-step relaxation process in which  the system passes from the initial 
state  nm,  to the final state  nm ′′,  through the intermediate state nj ′′, . The probability of this 
two-stage transition is given in the framework of second-order perturbation theory (see, for example,  
[69])  by:   

 

(
1, 2

''

2

2
, ''

, , , ,2 e e
m m

j n m n j n

m n H j n j n H m n
w E

E E E E
υ υ

σ σ
π )1Eδ ω ′

′′ ′′ ′ ′
= +

+ − −∑ h
h

ω− −h                                (21) 

 

Using the notation  mjj EE −=Δ , the complex matrix element can be presented as:  
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Γ
Γ
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Γ
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Γ +

− − Δ
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+ Γ −

∑

∑
∑ ∑

∑
∑

h

− Δh
                                                                                                                                                          

    (22) 

where  ( ) ( ) 21
ξωξ Mc h= . After deriving the expression for the squared matrix element, using the 

orthogonality properties of Van Vleck coefficients and performing thermal averaging one obtains: 
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                  (23)                       
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Without lack of generality let us suppose  that all  intermediate levels are situated above the states   
m , m′  so that all parameters  are assumed to be  positive. The probability of two-phonon 

transition should be considered in two different cases. 
jΔ

For the levels whose  is larger then jΔ mωh (where mω  is  the maximal Debye frequency)  we 

encounter the Raman process and  the probability should be calculated by the integration of the matrix 
element  given by equation (23) over all frequencies above mω .  The resonance case when mj ωh<Δ   

requires a special consideration.  This important advancement in the theory of paramagnetic relaxation 
was made  within the frame of the general theory of resonant fluorescence [74]  by Orbach [70] and  
Aminov [71-73]  (see books of  Altshuler and Kozyrev [69] and Aminov and Malkin [73]). In [73]  the 
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equation was given which allows  to calculate the Orbach-Aminov relaxation times Rτ  in a multilevel 
system  in terms of the one-phonon  relaxation probabilities. We adopt here this equation assuming 
that  and  are the labels for the initial and final states while j numerates the intermediate levels : m m′

 
 

( ) ( ) ( ) ( )

( ) ( )∑
′→→

→→′′→→

+

+
+=

j mjmj

mjjmmjjm

DR ww

wwww
11

1111
11
ττ

                                                                                 (24)                     

 
 

Equation (24) contains contributions to the overall  relaxation time arising  from the direct one-phonon 
processes (first term) that have been evaluated in Section 5 as well as the contributions from the two-
phonon resonance processes.   
 
7.  Numerical  estimations 
The  parameter   was found to be about   [55]  and  the best fit to the low temperature 

stepwise magnetization data [55] provided the values of   for the 
parameters of the AS exchange [60, 61].  The estimations for the spin-phonon coupling constants 
are:

J 185.0 −cm
,24.0 1−

⊥ = cmD 108.0 −= cmDn

Å3 1−−= cmλ , Å11.0 1−−≈ cmnβ , Å34.0 1−
⊥ −≈ cmβ  (see refs. [51, 75] ). From the X-

ray data one finds the  parameters   for the side of the inner  triangle in V
0

0 7 AR = 15 and 
33103 mkg⋅=ρ   for the  density of V15  [76].  The sound velocity (both transversal and 

longitudinal) is assumed to be  sm3102 ⋅=υ .  
The estimated one-phonon and  Orbach-Aminov relaxation times  for  the five most intense EPR 

transitions (figure 2) at the frequency 13.0 −= cmhν ( )GHz9=ν  in parallel field  and  at different  
temperatures are given in the Table 1. 

 
   Table 1.  Relaxation times in  the direct and Orbach-Aminov transitions at the  frequency of  9 GHz 
and at different temperatures. Symbol * is related to almost forbidden one-phonon transitions ( Dτ  is 
of the order of  tens  of seconds). 
                                                                                                                                                                       

 T = 1 K   T = 5 K T = 10 K 
m m’   τD , s      τR , s m m’   τD , s    τR , s m m’   τD , s    τR , s
4 1 1.3·10- 1  1·10-1  4 1 3·10- 2 8.3·10-3 4 1 1.5·10- 2  4.1·10-3 

2 3 1.5·10- 1  1.1·10-1  2 3 2.7·10- 2 7.8·10-3 2 3 1.4·10- 2  3.4·10-3

8 6       *  2.2·10-2  8 6       * 3.8·10-3 8 6       * 3.3·10-3 

6 5       * 3.5·10-2  6 5       * 5.1·10-3 6 5       * 3.9·10-3 

5 7       * 2.2·10-2  5 7       * 4.6·10-3 5 7       * 2.7·10-3 

  
At  for both the one-phonon and Orbach-Aminov processes the relaxation times are of the order of 

 within  the 
K1
s110− 21=S  manifold while for  the  excited  23=S  manifold  the direct processes 

show very long relaxation times of the order of tens of seconds (note, that this estimation in [75] 
contains an error). In this manifold Orbach-Aminov processes are much faster ( ). At 
higher temperatures Orbach-Aminov mechanism becomes  the leading one in the ground manifold as 
well while the one-phonon processes are less significant. At these temperatures in both manifolds the 
Orbach-Aminov relaxation times are of the order of  .  The relaxation times so far estimated are 

s~R
210−τ

s310−
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two orders longer then the coherence time of  measured in the Rabi oscillation experiment 
[1]. These estimations lead to the conclusion that  the decoherence in this system  can be probably 
attributed to the dipolar and hyperfine interactions. 

s. 51081 −⋅

            
8. Conclusions 
In this paper we propose a model of spin-phonon relaxation in the V15 system that is the first 
molecular magnet exhibiting Rabi oscillations. It is assumed that spin-phonon interaction arises from 
the modulation of the isotropic and AS exchange interactions by the acoustic modes of the crystal 
lattice. Two mechanisms of the spin-lattice relaxations are considered, namely, the direct one-phonon 
relaxation and the two-phonon Orbach-Aminov mechanism within which the set of closely spaced 
levels of the system belonging to the central magnetic triangle act as intermediate levels. In terms of 
the pseudo-angular momentum representation we indicate the selection rules for the direct one-phonon  
processes. A special role of the different components of the AS exchange is emphasized.  Most of  the 
direct transitions arise from acoustic modulation of the AS exchange rather then from modulation of 
the isotropic exchange. Two phonon relaxation trajectories would not be realized if AS exchange was 
not present in the system. 

The numerical estimations within the long-wave approximation for the acoustic vibrations show 
that at  for both the one-phonon and Orbach-Aminov processes the relaxation times are of the 
order of  within  the 

K1
s110− 21=S  manifold while for  the  excited  23=S  manifold  the direct 

processes are inactive. In this manifold Orbach-Aminov processes are much faster ( ). At 
higher temperatures Orbach-Aminov mechanism becomes  the leading one in the ground manifold as 
well while the one-phonon processes are less significant. At these temperatures in both manifolds the 
Orbach-Aminov relaxation times are of the order of  .  The spin-phonon relaxation times prove 
to be two orders longer then the coherence time measured in the Rabi oscillation experiment for V

s~R
210−τ

s310−

15.   
To put the results into the perspective the following remarks are to be done. The second (after V15 ) 

molecular magnet where coherent Rabi  oscillations  have been observed is the so called Fe4 complex 
[10]. Spin-lattice relaxation time   has been measured for this system and was found to be of  the 

order of  . Due to its strong temperature dependence,   in  Fe
1T

s610−
1T 4  was attributed to the two-

phonon processes, either Raman or Orbach-Aminov types. Since spin-lattice relaxation time has not 
been measured for V15, and in this view it would be  interesting to compare the results for two systems 
so far mentioned. One can rudely estimate that  the isotropic  spin-phonon  coupling parameters λ   in  
V15  and  Fe4  relate to each other  as 1:10, as the isotropic  constants  relate (  in V0J 185.0 −cm 15,  

 in  Fe12.8 −cm 4 [77]). Spin-lattice relaxation times then should  relate to each other as squared 

reciprocal values ( )21 λ  and one may expect  the order of  for  in  Vs410−
1T 15. However, since  the 

ground state spins also relate as 1:10 ( 21  in V15,  in Fe5 4), relaxation rates in V15  may turn out to be 

significantly longer then even   and reach the values estimated in this work. s410−

Vanadium cluster is known for its very small spin-vibronic interaction. However, in  the  trinuclear 
low-spin systems similar to V15 but with strong spin-vibronic coupling (like copper cluster [78,79]) the 
phonon assisted  relaxation is expected  to be much faster, especially when the main decoherence 
mechanism, spin-to nuclei and dipole-dipole interactions, are substantially suppressed. According to  
[1]  the coherence time may be increased  up to  when the main decoherence mechanisms are 
suppressed by the chemical means. The approach so far developed can be applied to more complicated 
spin-frustrated systems, like high-nuclearity magnetic polyoxometalates [80]. 

s410−
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Appendix  
The vectors ,  are related  to  the eigen-vectors in the spin coupling  scheme ie 8,,1L=i ( ) MSS12  

(see [51,59]) by  the following relations:  
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The matrix (Section 5) in the “pure” basis  (B ie 8,,1L=i ) is the following: 
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