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Abstract

In this article, we analyze the interplay between the antisymmetric (AS) exchange interaction and Jahn–Teller (JT) vibronic coupling
in spin-frustrated systems with triangular units. AS exchange in these systems creates a strong first order magnetic anisotropy related
to the orbitally degenerate frustrated ground state that is analyzed for the unique structure of the cluster anion present in
K6½VIV

15 As6O42ðH2OÞ� � 8H2O (V15 cluster) exhibiting layers of different magnetization. Spin-frustration inherently related to the
orbital degeneracy creates a structural instability that is shown to be competitive to the AS exchange. The vibronic pseudo JT
coupling arising from the modulation of the exchange interaction by the double degenerate molecular vibrations is shown to reduce
AS exchange giving rise to a restoration of magnetization quenched by AS exchange. This leads to an essential reduction of the magnetic
anisotropy in spin-frustrated triangular clusters so that in the limit of strong JT coupling the isotropic exchange model becomes
adequate.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this article we address the study of the manifestations
of vibronic JT and pseudo JT coupling in the magnetic
anisotropy of the exchange coupled frustrated systems in
which AS exchange interaction plays a significant role.
Magnetic anisotropy is one of the key questions in the field
of single molecule magnetism [1,2]. Single molecular mag-
nets based on large metal clusters possessing high spin
ground state and barrier for spin reorientation are promis-
ing in the design of the new memory storages at the molec-
ular level and at the same time open a new interesting area
of physics within the nanoscopic scale [2].

The aim of this paper is to demonstrate the role of AS
exchange [3,4] in the magnetic anisotropy of spin-frustrated
system and to reveal how the vibronic JT interaction affects
0022-2860/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.molstruc.2006.12.062

* Corresponding author. Tel.: +972 8 647 93 61; fax: +972 8 647 29 43.
E-mail address: tsuker@bgu.ac.il (B.S. Tsukerblat).
the magnetic anisotropy caused by the AS exchange. The
understanding of a special role of the AS exchange in spin
frustrated systems, particularly, in trinuclear transition
metal clusters, dates back to the seventies (see review article
[5] and refs [6–12]).

The plan of the paper is the following. First, we shortly
summarize the manifestations of the AS exchange in the
cluster anion present in K6½VIV

15 As6O42ðH2OÞ� � 8H2O (here-
after V15 cluster). This system was discovered more than 15
years ago [13] and since that time attracts continuous and
increasing attention as an unique molecular magnet based
on an unique structure exhibiting layers of different magne-
tization [14–16] (see also [17–22]). Magnetic properties of
the V15 cluster are inherently related to spin frustration
effect in the layered quasispherical arrangement of vanadi-
um ions and from this point of view V15 represents a system
for which the manifestations of the AS exchange are espe-
cially interesting and the experimental data do allow to find
out precisely the key parameters.
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Then we discuss the manifestations of the vibronic
coupling arising from the modulation of the exchange
interactions by the displacements of the metal ions in
spin-frustrated systems. As far as the magnetic anisotropy
caused by the AS exchange is related to the orbital degen-
eracy (or more commonly, to the orbital contributions) the
role of the JT effect (JTE) [23–25] becomes crucially impor-
tant if the vibronic interaction is significant [12] We show
that the manifestations of the magnetic anisotropy are
strongly influenced by a complicated interplay between
AS exchange and pseudo JT coupling. Although the JTE
play an universal role in molecular and solid state physics
[25] the influence of the JTE on the molecular magnetic
anisotropy still remains open.
Fig. 1. Energy pattern of the triangular vanadium unit in the magnetic
field applied in the plane (H^C3), J = 0.847 cm�1, g = 2. (a) Dn = 0,
D^ = 0; (b) Dn = 0.3J, D^ = 0; (c) Dn = 0.3J, D^ = 0.6 J.
2. Exchange interactions

The molecular cluster V15 has a distinctly layered quasi-
spherical structure within which fifteen VIV ions (si = 1/2)
are placed in an arrangement of a central triangle sand-
wiched by two hexagons [3]. At low temperatures two hexa-
nuclear VIV

6 are spin-paired so that only the excitations
within the frustrated antiferromagnetic VIV

3 triangle affect
the magnetic properties [4–7]. We will focus on the three-
spin model of V15 within which the isotropic superexchange
can be described by the Heisenberg-Dirac-van Vleck
(HDVV) exchange Hamiltonian:

H 0 ¼ 2JðS1S2 þ S2S3 þ S3S1Þ; ð1Þ

where S1, S2 and S3 denote the spin operators on the sites
1, 2 and 3 and Si = 1/2 and for the antiferromagnetic case
J > 0. As usually the following spin coupling scheme
S1S2(S12)S3S ” (S12)S is assumed with S12 being the inter-
mediate spin. An equilateral spin triangle with the antifer-
romagnetic exchange represents an example in which
exchange coupling in the ground state forces spins to be
aligned antiparallel in each pair while this condition can
not be satisfied. This situation is usually referred to as spin
frustration. The analysis of the HDVV Hamiltonian (see
review article [5]) revealed that the ‘‘degeneracy doubling’’
of S = 1/2 levels with respect to the intermediate spin in the
ground manifold (S12)S = (0)1/2,(1)1/2 is associated with
the exact orbital degeneracy in the triangular system so that
the ground term is the orbital doublet 2E of the trigonal
point group while the excited one is the orbital singlet
4A2. One can see that spin-frustration is inherently related
to the orbital degeneracy and therefore leads to the JT
instabilities. At the same time the ground state is split by
spin–orbital interaction that appears as AS exchange term
in the spin-Hamiltonian. In this Section, we will consider
AS exchange and then (Sections 3–5) show how the JT
instability affects the magnetic properties and coexists with
the AS exchange.

AS exchange in a triangular cluster referred to the
molecular coordinate system(see Fig. 3 in Ref. [26]) can
be described by the Hamiltonian:
HAS ¼ Dn ½S1 � S2�Z þ ½S2 � S3�Z þ ½S3 � S1�Z
� �
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; ð2Þ
where [Si · Sj] are the vector products, the parameter Dn is
associated with the ‘‘normal’’ to the plane (along Z axis)
component of AS exchange and Dl and Dt are those for
the ‘‘in-plane’’ (XY) contributions (along and perpendicu-
lar to a side of the triangle, see [26]).

As it is well-known the AS exchange is responsible for
the magnetic anisotropy of the system [5–11,26–28]. The
main consequences of the AS exchange are the following:
(1) first order zero-field splitting of two spin doublets
(S12)S = (0)1/2,(1)1/2; (2) zero-field splitting of the S = 3/2
state that is a second order effect arising from the mixing
of different spin states through ‘‘in-plane’’ contributions;
(3) magnetic anisotropy resulting in a strong reduction of
the magnetic moments in a weak perpendicular field; (4)
restoration of the pure spin magnetic moments in a strong
field due to the reduction of the AS exchange under; (5)
special rules for the crossing/anticrossing Zeeman levels
based on the pseudoangular momentum representation;
(6) special selection rules in EPR including peculiar ratio
of intensities.

The influence of the AS exchange on the Zeeman pattern
for the field H^C3 is illustrated in Fig. 1 [28]. The levels
ei(H) with i = 1, 2, 3, 4 are related to S = 1/2 while i = 5,
6, 7, 8 are the numbers of Zeeman sublevels for S = 3/2



Fig. 2. Experimental data (from ref. [29]) and theoretical curves of static
magnetization calculated with account for the isotropic and AS exchange
interactions (H^C3). Experimental data: circles – T = 0.1 K, squares –
T = 0.3 K, triangles – T = 0.9 K, stars – T = 4.2 K. Solid lines – calculated
curves with the best fit parameters (see text).

Fig. 3. Full symmetric (A1) and double degenerate (E) modes of a
triangular unit.
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(with M = «1/2 and M = «1/2) as shown in Fig. 1a in
which the simplest case of the isotropic model is illustrated.
The energy pattern for the case Dn „ 0, Dl = Dt = 0 is
shown in Fig. 1b. Three peculiarities of the energy pattern
that are closely related to the magnetic behavior should be
noticed: (1) the ground state involving two degenerate
S = 1/2 levels shows zero-field splitting into two Kramers
doublets separated by the gap D ¼

ffiffiffi
3
p

Dn; (2) at low fields
gbH 6 D the Zeeman energies are double degenerate and
show quadratic dependence on the field like in a van Vleck
paramagnet:

e1; 3ðHÞ �
ffiffiffi
3
p
jDnj=2� ðgbHÞ2=4

ffiffiffi
3
p
jDnj; e2;4ðHÞ

¼ þ
ffiffiffi
3
p
jDnj=2þ ðgbHÞ2=4

ffiffiffi
3
p
jDnj: ð3Þ

It is evident that the magnetic moments associated with the
ground state are strongly reduced at low fields [5,9]; (3) the
magnetic sublevels arising from S = 3/2 (M = �1/2 and
M = �3/2) cross the sublevels belonging to S = 1/2 spin
levels, no avoided crossing points are observed. At high
perpendicular field the levels e1, 3 and e2, 4 exhibit again lin-
ear magnetic dependence [5]:

e1; 3ðHÞ ¼ �3J=2� 3D2
n=gbH � gbH=2;

e2; 4ðHÞ ¼ �3J=2þ 3D2
n=gbH þ gbH=2: ð4Þ

One can see that a strong perpendicular field restores linear
Zeeman splitting but without zero-field splitting so that the
perpendicular field reduces the normal part of AS coupling.

When the AS exchange in the most general form com-
patible with the trigonal symmetry is involved (Dn „ 0,
Dl „ 0, Dt „ 0) the energy pattern shows new peculiarities
(Fig. 1c). The low field part of the spectrum is not affected
by the in-plane part of AS exchange and qualitatively as
well as quantitatively is very close to that in Fig. 1b. At
the same time in the vicinity of the crossing points the effect
of the normal AS exchange is negligible but the in-plane

part of AS exchange D? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

t þ D2
n

q
acts as a first order

perturbation giving rise to the avoided crossings of the
ground and excited states as shown in Fig. 1c. [26].

In the framework of the isotropic model the magnetiza-
tion exhibits two sharp non-broadened steps, one at zero-
field and the second one at the field H = 3J/gb. As one
can see the normal part of AS exchange results in the
broadening of the low field step in l(H) meanwhile the high
field step remains non-broadened. At the same time the
normal AS exchange leaves the exact crossing of S = 3/2,
M = �3/2 level with the lowest component of S = 1/2 that
results in absence of the broadening of the high field step.
Finally when both parts of the AS exchange are taken into
account we obtain broadening of both steps.

Fig. 2 shows that the model that includes AS exchange
interaction gives perfect fit of the field dependence of mag-
netization to the experimental data [29] in the whole range
of fields for all temperatures including extremely low tem-
perature. The best fit procedure gives the following set of
parameters: J = �0.855 cm�1, g = 1.94, D^ = 0.238 cm�1,
Dn = 0.054 cm�1. It should be noted that the in-plane
parameter D^ brings the main contribution to the overall
AS exchange. This parameter is just responsible for the
behavior of the levels in the anticrossing region H �
2.8Tesla. The V15 cluster represents a system with small
exchange and consequently weak vibronic coupling
(Section 4). Later on we will consider the case of sufficiently
strong vibronic coupling.

3. Vibronic interaction

The symmetry adapted vibrations A1ðQA1
� Q1Þ and

double degenerate E type (QEx ” Qx,QEy ” Qy) of an equi-
lateral triangular unit can be expressed as (Fig. 3):
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ffiffiffi
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þ 1
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ffiffiffi
3
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� X 3
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: ð5Þ

The vibronic interaction arises from the modulation of the
isotropic and AS exchange interactions by the molecular
displacements.
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In fact, the exchange parameters are the functions of the
interatomic distances so the linear terms of the vibronic
Hamiltonian can be represented as:

H ev ¼ 2
X

ij

SiSj

X
a¼1;x�y

oJ ijðRijÞ
oRij

	 

DRij¼0

� oRij

oQa

Qa; ð6Þ

H 0ev ¼
X

ij

S i � Sj

� � X
a¼1;x�y

oDijðRijÞ
oRij

	 

DRij¼0

� oRij

oQa

Qa: ð7Þ

Here, the summation is extended over all pairwise spin–
spin interactions (ij = 12, 23, 31). Eqs. (6) and (7) are the
contributions of the overall vibronic coupling relating to
the isotropic and AS exchange interactions, respectively.
After all required transformations with the use of Eq. (5)
one can arrive at the following vibronic Hamiltonian Hev:

H ev ¼ k V̂ 1Q1 þ V̂ xQx þ V̂ yQy

� �
; ð8Þ

where k �
ffiffiffi
6
p
ðoJ ijðRijÞ=oRijÞ0 is the vibronic coupling

parameter associated with the isotropic exchange and the
operators V̂ a are the following [30] (see [5,9] and references
cited therein):

V̂ 1 ¼
ffiffiffi
2

3

r
ðS1S2 þ S2S3 þ S3S1Þ;

V̂ x ¼
1ffiffiffi
6
p ðS2S3 þ S3S1 � 2S1SÞ; V̂ y ¼

1ffiffiffi
2
p ðS2S3 � S3S1Þ:

ð9Þ

By applying a similar procedure one can obtain the vibron-
ic contribution associated with the AS exchange. The final
expression is the following:

H 0ev ¼ Ŵ 1Q1 þ Ŵ xQx þ Ŵ yQy : ð10Þ

The operators Ŵa are expressed in terms of the vector
products of spin operators as follows:
1
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ð13Þ
Ŵ 1 ¼ k12½S1 � S2� þ k23½S2 � S3� þ k31½S3 � S1�;

Ŵ x ¼
1

2
k12½S1 � S2� þ k23½S2 � S3� � 2k31½S3 � S1�ð Þ;

W y ¼
ffiffiffi
3
p

2
k23½S2 � S3� � k31½S3 � S1�ð Þ:

ð11Þ
In Eq. (11) the values kij are the vector coupling parameters
defined as kij = (o Dij (Rij)/o Rij)0. Under the condition of
trigonal symmetry there are three parameters, namely,
normal part kn = kijn and two perpendicular contributions
kt = kijt and kl = kijl where the symbols l and t have the
same meaning as in the definition of the AS exchange.

The evaluation of the vibronic matrices can be per-
formed with the aid of the irreducible tensor operators
(ITO) approach [31,32]. With this aim each pairwise
interaction can be expressed in terms of the zeroth order
and first order tensorial products of ITOs as:

ðSiSjÞ ¼ �
ffiffiffi
3
p

S
ð1Þ
i � S

ð1Þ
j

n oð0Þ
;

kij½S i � Sj� ¼ i
ffiffiffi
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i � S
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j
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� i
ffiffiffi
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ffiffiffi
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ð1Þ
j
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0
; ð12Þ

where fSð1Þi � S
ð1Þ
j g

ðkÞ
m is the symbol of the tensor product

[33] (rank j, component m) of two spin ITOs S
ð1Þ
i and

S
ð1Þ
j relating to the sites i and j and / = 0, 2p/3, 2p/3 for

the sides 12, 23, and 31 of the triangle correspondingly,
k� ¼ 	ð1=

ffiffiffi
2
p
Þðkl � iktÞ.

4. Vibronic matrix for the ground state adiabatic surfaces

In order to simplify our consideration and to get clear
insight on the influence of the JT interaction on the
magnetic properties we assume that the gap 3J exceeds
considerably the vibronic coupling and AS exchange and
therefore we include in the basis set only four low lying spin
1/2 states and exclude the full symmetric mode Q1. In this
view one should note that the role of A1 mode is not a
simple shift of Q1 coordinate. In fact, A1 vibration is active
in the pseudo JTE when a relatively small vibronic contri-
bution of AS exchange is taken into account (a more
detailed description will be given elsewhere). In the approx-
imation so far assumed the matrix of the full Hamiltonian
HAS þ H ev þ H 0ev þ H Zeeman is obtained as:
In the matrix representation of the full Hamiltonian the
basis j(S12)SMæ is used with the following order of the basis
spin functions: jð0Þ 1

2
; 1

2
i; jð0Þ 1

2
;� 1

2
i; jð1Þ 1

2
; 1

2
i; jð1Þ 1

2
;� 1

2
i.

Since the system has axial magnetic anisotropy one can
that the field is applied in a ZX plane (Hy = 0). One sees
that the vibronic interaction leads to a complicated com-
bined JT and pseudo JT problem. The modulation of the



ig. 4. Adiabatic potentials for the ground state of a triangular exchange
stem in the space of the double degenerate vibrations: (a) d = 0, t = 2.0;
) weak vibronic interaction and/or strong AS exchange (d = 1.0,
= 1.0); (c) weak AS exchange and/or strong vibronic interaction
= 1.0, t = 3.0).
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isotropic exchange is expected to provide the dominant
contribution to the vibronic interaction. To further simpli-
fy the solution of the problem and make it more obvious
we put k+ = k� = 0 and gi = g^ = g (although the eigen-
values of the vibronic matrix (13) are found without these
simplifying assumptions). The four eigen-values of the
matrix (13) are found as:

e1;4ðq; nÞ¼	
1

2
ffiffiffi
2
p �hx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2þ2d2þ3t2q2�2

ffiffiffi
2
p

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3t2q2þ2d2 cos2 h

qr

e2;3ðq; nÞ¼�
1

2
ffiffiffi
2
p �hx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2þ2d2þ3t2q2þ2

ffiffiffi
2
p

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3t2q2þ2d2 cos2 h

qr

ð14Þ

The following dimensionless parameters are introduced:
vibronic coupling parameter t = (k/⁄x)(⁄/Mx)1/2, zero-
field splitting of the ground state d ¼

ffiffiffi
3
p

Dn=�hx � D=�hx, ap-
plied field n = gbH/⁄x and coordinates qa = (Mx/⁄)1/2Qa,
Hz = Hcosh. Finally, q is the radial component in the plane
qxqy defined as usually: qx = qcosu, qy = qsinu.

The adiabatic surfaces are axially symmetric (at an arbi-
trary direction of the applied field) respectively the C3 axis
complying with the symmetry of the AS exchange.

In the case of d = 0 and n = 0 one faces a two mode
pseudo JT problem and one obtains simple expressions
for a pair of the double degenerate surfaces that are quite
similar to that in the pseudo JT 2E 
 e problem taking
the spin–orbital interaction into account.

U�ðqÞ=�hx ¼ q2=2� ð1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 3t2q2=2

q
: ð15Þ

One can see that in the limit of the isotropic exchange
model the surface represents a ‘‘Mexican hat’’ (Fig. 4a)
with the conical intersection at q = 0 that corresponds to
the basic JT E 
 e problem [23–25]: U�ðqÞ=�hx ¼ q2=2�
ð
ffiffiffi
3
p

=2
ffiffiffi
2
p
Þjtjq. This limiting case corresponding to the

well-known spin-phonon coupling Hamiltonian [30] (see
for details [5,9] and references cited therein) has recently
been considered again in [34]. In general, the shape of the
surfaces depends on the interrelation between the AS ex-
change and vibronic coupling that proved to be competi-
tive. In the case of weak vibronic coupling and/or strong
AS exchange t2 < 4jdj/3 the lower surface possesses the
only minimum at qx = qy = 0(q = 0) so that the symmetric
(trigonal) configuration of the system proves to be stable.
In the opposite case of strong vibronic interaction and/or
weak AS exchange, t2 > 4jdj/3, symmetric configuration
of the cluster is unstable and the minima are disposed at
the ring of the trough of the radius q0:

q0 ¼ ð1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3t2=2� 8d2=3t2

q
: ð16Þ

The radius q0 decreases with the increase of AS exchange
and vanishes at jdj = 3t2/4. These two types of the pseudo
JT surfaces are shown in Fig. 4b and c. The depth of the
minima ring in the second type (respectively, to the top
in the low surface) depends on the interrelation between
the JT constant and AS exchange and is found to be
F
sy
(b
t
(d
e0 = (3t2�4d2)2/48t2 while the gap between the surfaces in
the minima points 3t2/4 is independent of the AS exchange.

The nuclear motion in the bottom of the trough for the
JT E 
 e problem is described in [24,25]. The metal sites of
a distorted triangle move along the circles so that the
phases of the ions 2 and 3 are shifted by the angles 2p/3



Fig. 5. Rotation of the distorted configurations (solid triangle) in the
bottom of the trough-illustration for the elimination of spin frustration
through the JT instability. The symmetric configuration is shown by the
dashed line.

Fig. 6. Section of the adiabatic potentials in the case of JT instability,
illustration for the zero-field splitting of the ground state in the
vibronically distorted configurations.
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and 4p/3, respectively, to the phase of the ion 1. Fig. 5
shows an instant nuclear configuration in course of this
motion in which the side 12 is elongated while the sides
13 and 23 are compressed taking advantage from the new
exchange network. In this geometry of the system two anti-
ferromagnetic pathways 13 and 23 are energetically favor-
able while the connection 12 is ferromagnetic. One can see
that the system possesses a definite spin alignment so that
spin frustration is eliminated by the JT distortion with
the instant isosceles configuration corresponding to
S12 = 1 in the ground state.
5. Influence of the Jahn–Teller interaction on the

magnetization

In order to reveal the effects of the JT vibronic interac-
tion one can employ the adiabatic approximation that
was proved to provide a quite good accuracy in the
description of the magnetic properties of mixed-valence
clusters [35] and allowed to avoid numerical solutions of
the dynamic problem. According to the semiclassical
adiabatic approach the expressions Ui(q,H) = ⁄xq2/2 + ei

(q,H) in which the exact eigen-values of the vibronic matrix
are substituted play the role of full energies and the magne-
tization can be obtained by averaging the derivatives
�oUi(q,H)/oHa (Zp is the partition function):

MaðH ; T Þ ¼ Z�1
p

X
i

Z 1

0

expð�U iðq;HÞ=kT Þ

� ð�oU iðq;HÞ=oH aÞqdq: ð17Þ

Integration in Eq. (17) includes all possible nuclear config-
urations regarding the thermal populations of the levels.
To clarify the physical situation let us consider a selected
configuration q in which the system is instantly distorted.
In the case of an arbitrary q „ 0 the gap between spin 1/2
levels is increased and at H = 0 the zero-field is dðqÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3t2q2=2þ d2
q

as illustrated in Fig. 6. The Zeeman suble-
vels in an arbitrary nuclear configuration q in the weak
field range up to the second order terms with respect to
the field n defined by the angle h can be found as:
e1;3ðq; nÞ
�hx

¼ � 1

2
dðqÞ � 1

2
j1ðhÞn� j2ðhÞn2;

e2; 4ðq; nÞ
�hx

¼ þ 1

2
dðqÞ � 1

2
j1ðhÞnþ j2ðhÞn2; ð18Þ

where the first and second order van Vleck coefficients [36]
j1(h) and j2(h) in the Zeeman energies are the functions of
the angle h and JT coupling parameter:

j1ðhÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3t2q2=2þ d2 cos2 h

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3t2q2=2þ d2

q ; j2ðhÞ ¼
d2 sin2 h

4 3t2q2=2þ d2
� �3=2

:

ð19Þ
Let us assume that the motion of the system is confined to
the bottom of the trough. Strictly speaking this is valid pro-
viding strong JT coupling but in all cases it gives clear qual-
itative results and transparent key expressions. Providing
q ¼ q00 �

ffiffiffiffiffiffiffiffi
3=8

p
jtj (radius of the minima ring) the valueffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3t2q2=2
p

is simply the JT splitting EJT = 3t2/4 (gap
between the surfaces in the minima points of the lower
surface) and the van Vleck coefficients j1(h) and j2(h)
can be directly related to the JT splitting and AS exchange:

j1ðhÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

JT þ d2 cos2 h

E2
JT þ d2

s
; j2ðhÞ ¼

d2 sin2 h

4ðE2
JT þ d2Þ3=2

: ð20Þ

One can see that with the increase of the JT interaction
the coefficient j1(h) becomes independent of the angle
hðj1ðhÞ � 1� d2 sin2 h=2E2

JT Þ and tends to unit while j2(h)
disappears ðj2ðhÞ ¼ d2 sin2 h=4E3

JT Þ so that in the limit of
strong vibronic coupling we arrive at the isotropic linear
Zeeman splitting that is obtained within the HDVV model.
This is similar to the role of static distortions in the
triangular metal clusters in which AS exchange splits the
ground state [5,9]. Suppression of the exchange magnetic
anisotropy is a quite general conclusion that is closely
related to the reduction of the physical quantities of the orbi-
tal nature by the JT interaction (Ham effect) [23–25].

In order to reveal the influence of the JT coupling on the
anisotropic properties of the AS exchange in more detail let



Fig. 7. Influence of the JT interaction (defined by the vibronic coupling parameter t) on the Zeeman energy pattern in a perpendicular magnetic field
(H^C3).
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us consider the effects of JT coupling in the two principal
directions of the magnetic field. In the case of parallel field
(HiC3) one finds that j1(0) = 1 and j2 (0) = 0 so that one
obtains the following Zeeman pattern:

e1;3ðnÞ
�hx

¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

JT þ d2
q

� 1

2
n;

e2;4ðnÞ
�hx

¼ þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

JT þ d2
q

� 1

2
n: ð21Þ

Eq. (21) exhibits linear Zeeman splitting in a pair of spin
doublets in the parallel field but the role of the zero-field

splitting plays now the combined effective gap
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

JT þ d2
q

instead of the initial one jdj related to the AS exchange.
This does not affect the magnetic moments of the ground
manifold so that neither JT interaction nor the AS
exchange do not manifest themselves in the magnetic
characteristics in the case of HiC3.

In the case of perpendicular field H^C3 one obtains that

j1ðp=2Þ ¼ EJT=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

JT þ d2
q

; j2ðp=2Þ ¼ d2=4ðE2
JT þ d2Þ3=2 and

therefore the Zeeman energy in this case is given by:

e1; 3ðnÞ
�hx

¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

JT þ d2
q

� EJTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

JT þ d2
q 1

2
n

� d2

4ðE2
JT þ d2Þ3=2

n2;

e2;4ðnÞ
�hx

¼ þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

JT þ d2
q

� EJTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

JT þ d2
q 1

2
n

þ d2

4ðE2
JT þ d2Þ3=2

n2; ð22Þ
where the eigen-values are denoted as eiðnÞ � eiðq00; nÞ.
Eq. (22) show that the Zeeman pattern contains both linear
and quadratic contributions. The role of the JT coupling
can be understood by comparing the Zeeman picture so
far obtained with that at t = 0. It is important that in the
absence of the JT coupling the linear Zeeman terms disap-
pear and the Zeeman energies contain only quadratic terms
(with respect to the field) as follows from Eq. (3). Thus
Fig. 7a illustrates two degenerate pairs of the Zeeman levels
in perpendicular field in the symmetric nuclear configura-
tion. In a weak field range they are given by:

e1ðnÞ=�hx ¼ e3ðnÞ=�hx ¼ �jdj=2� n2=4jdj;
e2ðnÞ=�hx ¼ e4ðnÞ=�hx ¼ þjdj=2þ n2=4jdj: ð23Þ

This can be referred to as the effect of the reduction of the
magnetization in low magnetic field that is perpendicular to
the axis of AS exchange [5,9]. The reduction of the Zeeman
energy by the AS exchange gives rise to a small van Vleck
type contribution to the magnetic susceptibility at low
field gbH� Dn. An essential effect is that the JT interac-
tion leads to the occurrence of the linear terms for the
Zeeman energies at low field (see Eq. (22)). This is shown
in Fig. 7b–d that illustrate transformation of the Zeeman
levels under the influence of the vibronic coupling obtained
by the aid of general Eq. (14). As a result the JT coupling
essentially increases the magnetic moments of the system at
low perpendicular fields when magnetization in symmetric
configuration is reduced by the AS exchange. The range of
the linear Zeeman splitting increases with the increase of
the JT coupling and the crossing point moves in the high
field region. This can be considered as the effect of the
reduction of the AS exchange by the JT distortions (that
are, in fact, dynamic) accompanied by the restoration of



Fig. 8. Influence of the JT interaction on dependence magnetization vs.
perpendicular field (H^C3).
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the magnetic moments to the value specific for a S = 1/2
system.

Fig. 8 illustrates the influence of the JTE on the field
dependence of the magnetization of a triangular unit that
is closely related to the influence of the vibronic coupling
on the Zeeman pattern (Fig. 7). The magnetization vs. per-
pendicular field at T = 0 is presented as a function of the
vibronic coupling parameter t that is assumed to satisfy
the condition of instability t2 > t2

0 � 4jdj=3 (see Eq. (16)).
One can see that providing t = t0 (and of course t < t0 that
corresponds to a symmetric stable configuration) the mag-
netization slowly increases with the increase of the field
(due to reduction of the Zeeman interaction in the low
field) then reaches saturation when the magnetic field is
strong enough to break the AS exchange. Increase of the
JT coupling leads to the fast increase of the magnetic
moments in the region of low field and formation of the
step in magnetization caused by the reduction of the mag-
netic anisotropy (appearance of the linear terms in the Zee-
man levels). The height of the step depends on the
interrelation between AS exchange and vibronic coupling
and can be expressed as:

MðH ¼ 0Þ ¼ gb
2

EJTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

JT þ d2
q : ð24Þ

The height of the step increases with the increase of the vib-
ronic coupling. Finally, when the JT coupling is strong en-
ough (t = 2t0) one can observe staircase like behavior of
magnetization with the sharp step in which M(H) jumps
from zero to M(H = 0) = gb/2 at zero-field (and T = 0)
that is expected for a magnetically isotropic system. The
influence of the distortions caused by JT instability is very
pronounced so that the step starts to appear even when
t = 1.01t0. Although, the semiclassical description in this
range of parameters loses its accuracy the qualitative
results are able to draw an adequate physical picture. More
accurate quantitative results in this area of vibronic cou-
pling can be obtained by solving the dynamic pseudo JT
problem.

Let consider separately the case of a strong magnetic
field gbH� Dn. In this limit one can find the following
approximate expressions based on the high field expansion
in Eq. (14):

e1;3ðq; nÞ
�hx

¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

JT þ d2 cos2 h
q

� 1

2
n:

e2; 4ðq; nÞ
�hx

¼ þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

JT þ d2 cos2 h
q

� 1

2
n ð25Þ

One can see that in a strong magnetic field the system be-
haves like two S = 1/2 levels but the AS exchange contribu-
tion to the full zero-field splitting is reduced by the applied
field to the value jdcos hj. At the same time – as one can see
from Eq. (21) – the vibronic contribution is not affected by
the field so that in the limiting case of strong perpendicular
field the zero-field splitting is simply EJT as can be expected
for the magnetically isotropic vibronic coupling.

6. Conclusion

In this article, we have analyzed the main manifestations
of the AS exchange and JT instability in spin-frustrated sys-
tems exhibiting non-collinear spin structure. We employed
the three-spin model of the V15 cluster that includes isotro-
pic and AS exchange interactions. AS exchange plays a
crucial role in the understanding of the field and tempera-
ture dependence of the adiabatic magnetization of V15 sin-
gle crystals in which the vibronic interaction is small. It
was demonstrated that the orientation of the AS exchange
vector, but not only its absolute value, plays a special phys-
ical role in the magnetic behavior of spin-frustrated sys-
tems. In fact, the normal part of the AS exchange affects
the low field part of the magnetization curve when the field
is applied in the plane of the vanadium triangle. At the same
time the in-plane components of AS exchange give rise to a
peculiar shape of magnetization vs. field in the vicinity of
the crossing point of the magnetic sublevels belonging to
S = 1/2 and S = 3/2 levels. It is possible to reach a perfect
fit to the experimental data on the adiabatic magnetization
vs. applied in-plane and for the first time to precisely
estimate two components of the AS vector.

Then we considered the pseudo JT vibronic problem for
the spin-frustrated ground state of the triangular system
with half-integer spins and in context of significant vibronic
interaction. The vibronic Hamiltonian matrix is deduced in
a general form. Is the case of a weak JT coupling and/or
strong AS exchange the adiabatic surface in the space of
E- vibrations has the only minimum in the full symmetry
point while in the opposite case the system proves to be
unstable and has a ring of minima at the bottom of the
trough. JT instability is shown to eliminate spin frustration
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due to removal of ‘‘accidental’’ degeneracy. The influence
of the vibronic interaction on the magnetization is revealed
with the aid of the semiclassical adiabatic approach that
provides qualitatively transparent results. The first and sec-
ond van Vleck coefficients in the Zeeman energies are
deduced as the functions of the direction of the field, AS
exchange and vibronic coupling. The JT coupling is shown
to be competitive to the AS exchange so that the increase of
the vibronic coupling decrease the magnetic anisotropy of
the system. On the other hand AS exchange tends to sup-
press to JTE. This is demonstrated by the theoretical mod-
eling of the field dependence of the magnetization that
clearly exhibits crucial role of the pseudo JT coupling in
spin-frustrated systems.

The present study is considered to be part of a more
extended future investigation regarding multicenter JTE
and structure-related magnetism in nanoscopic polyoxo-
metalates/vanadates showing frustration from one-triangle
(present paper) via two- (in case of M6Mo57 [37]) to 20-tri-
angle spin-arrays (in case of M30Mo72; M = VIV, FeIII [38]).
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