
Magnetic Excitations in Cu 6 and Mn 6 Hexagons Embedded in
D3d -Symmetric Polyoxotungstates

Noa Zamstein, Alex Tarantul, and Boris Tsukerblat*

Department of Chemistry, Ben-Gurion UniVersity of the NegeV, 84105 Beer-SheVa, Israel

Received March 28, 2007

In this article we reconsider the discussion of the magnetic measurements for the two novel polyoxotungstates,
(n-BuNH3)12[(CuCl)6(AsW9O33)2]‚6H2O and (n-BuNH3)12[(MnCl)6(SbW9O33)2]‚6H2O, which have been synthesized
and characterized by Yamase et al. (Inorg.Chem. 2006, 45, 7698). Analysis of the magnetic susceptibility and
magnetization for Cu6

12+ and Mn6
12+ hexagons based on the exact diagonalization of isotropic exchange Hamiltonian

shows that the best-fit first-neighbor coupling parameters are J ) 35 and 0.55 cm-1, respectively, while the second-
neighbor interactions are very small. These values exceed considerably those obtained by Yamase et al. (J )
8.82 and 0.14 cm-1) on the basis of the Kambe−Van Vleck formula that is inappropriate for six-membered rings.
We also got perfect fits to the experimental data for the field dependence of magnetization at 1.8 K. The results
imply the importance of axial anisotropy, which is shown to be especially pronounced for the Mn6

12+ cluster. We
discuss also the symmetry assignments of exchange multiplets to the exact SΓ terms (full spin, S, and irreducible
representation, Γ, of the point group) and correlate the results with the selection rules for the anisotropic magnetic
contributions. The antisymmetric exchange is shown to appear in orbitally degenerate multiplets as a first-order
perturbation and gives rise to an easy axis of magnetization along the C6 axis. Evaluation of the Zeeman levels
shows that the field applied in the plane of the hexagon fully reduces the effect of the antisymmetric exchange.

1. Introduction

Polyoxometalates (POMs) form a large and distinctive
class of inorganic compounds, which have been the focus
of interest of many branches of science in recent years, such
as chemistry, biology, medicine, and materials science.1 This
is the result of the high versatility of their electronic and
structural variation, which has rendered these compounds
model systems for studying metal-oxide-based conductivity,
intramolecular and intermolecular electron transfer in mixed-

valence systems, magnetic interactions, and electron-spin
couplings in large clusters. In particular, there has been
extensive research aimed toward designing single-molecule
magnets based on POMs encapsulating metal clusters (see
recent book by Gatteschi et al.2 highlighting this area).
Polyoxotungstates are one of the most important classes of
POMs in this context. This is because of their lability and
reactivity, enabling them to act as ligands toward 3d-
transition metal ions, creating clusters of varying sizes and
topologies. The bulky nonmagnetic POM framework guar-
antees an effective magnetic isolation of the metal clusters,
while also imposing its geometry, thus providing good
opportunities for the study of exchange interactions and
electron delocalization.3,4

In this paper, we discuss the magnetic data on two novel
polyoxotungstates, (n-BuNH3)12[(CuCl)6-(AsW9O33)2]‚6H2O
and (n-BuNH3)12[(MnCl)6(SbW9O33)2]‚6H2O, which have
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recently been synthesized and characterized by Yamase et
al.5 These complexes areD3d-symmetric, and six 5-fold
coordinated metal ions form approximately equatorial hexa-
gons (Cu6

12+ and Mn6
12+ clusters, hereafter Cu6 and Mn6)

with the first-neighboring Cu‚‚‚Cu and Mn‚‚‚Mn distances
of 2.913 and 3.248 Å, respectively.5 Yamase et al.5 also
reported the magnetic behavior of these compounds and
provided clear evidence of the ferromagnetic character of
the exchange interaction, but the modeling of the magnetic
properties was based on the Kambe-Van Vleck formula (see
text) that is irrelevant to the case of spin ring and leads to
an improper estimation of the exchange parameters.

We attempt to reconsider the interpretation of the experi-
mental magnetic data5 for the two POMs mentioned above
on the basis of the full energy pattern obtained with the aid
of the irreducible tensor operators (ITO) technique6 and
Magpack software.7 We discuss also the relationship between
the features of the exact energy pattern and that based on
the model employed in ref 5.

The outline of the paper is as follows. In section 2, we
describe the energy pattern for the Cu6 and Mn6 clusters;
section 3 is devoted to the discussion of the symmetry
properties of the exchange multiplets. The group theoretical
assignment of the exchange multiplets to the exactSΓterms
of the system (full spinS and irreducible representationΓ
of the point group) shows the presence of orbitally degenerate
states that exhibit first-order splitting caused by the anti-
symmetric (AS) exchange. The problem of degeneracy in
the energy pattern of spin rings is also discussed in view of
the magnetic anisotropy. Section 4 gives the results of our
calculations of the magnetic susceptibility and magnetization
versus field, as well as the processing of the experimental
data of Yamase et al.5 We propose a new set of exchange
parameters for these systems and find the parameters of the
axial anisotropy for the ferromagnetic ground states.

2. Energy Pattern

Because the metal ions in the compound under consider-
ation occupy low-symmetry sites, the orbital degeneracy of
the ground terms of the constituent ions is completely
removed, and one can model the isotropic superexchange
interaction by the conventional Heisenberg-Dirac-Van
Vleck (HDVV) Hamiltonian2

In eq 1, the parametersJ and J′ refer to the first- and
second-neighbor exchange interactions (HamiltoniansH0 and
H′) in accordance with the enumeration of the sites in the
hexagons with magnetically equivalent sites as shown in
Figure 1, andSi represents the total spins of the ions (Si )
1/2 for Cu2+ ions andSi ) 5/2 for Mn2+). Third-order and
higher interactions are assumed to be negligible.

The energy levels of the spin hexagons within the first-
neighbor coupling approximation (eigen-values ofH0) have
been modeled in ref 5 by the well-known Kambe’s formula
applied to the six exchange-coupled ions

whereS is the full spin of the system (0e S e 3 for Cu6

and 0e Se 15 for Mn6). In fact, the Kambe’s formula, eq
6, provides the exact solution to the exchange problem only
in some special cases of high symmetry when the exchange
Hamiltonian can be expressed through the operatorS2 )
(∑iSi)2 and thus can be represented as

An equation of type 2 has been proposed by Van Vleck8

which served as an approximation in his consideration of
ferromagnetism in solids. An exact solution to the exchange
problem for a restricted number of symmetric clusters has
been obtained by Kambe (for a review see refs 2 and 6)
when the energy levels depend on of full and intermediate
spin quantum numbers. Later, the Van Vleck approximation
was applied to finite chains,9 assuming that each ion is
coupled to a certain mean number of neighbors, and
consequently, the energy levels are expressed by Kambe’s
formula.5 The resulting Kambe’s expression is usually
referred to as the Van Vleck formula (ref 5). The most
systematic study of the soluble (Kambe’s) systems has been
presented by Belorizky and Fries.10

The Hamiltonian, eq 3 is strictly valid for clusters in which
each spin is equally coupled to all remaining ones (this will
be referred to as “spherical” model) that occurs only in three
topologies, namely, for the trivial case of a dimer, an
equilateral triangle and a regular tetrahedron. In these special
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Figure 1. Scheme of the first- and second-neighbor exchange interactions
in a hexagon.

H ) -2J(S1S2 + S2S3 + S3S4 + S4S5 + S5S6 +
S6S1) - 2J′(S1S3 + S2S4 + S3S5 + S5S1 +

S2S6 + S6S4) ≡ H0 + H′ (1)

E(S) ) -J[S(S+ 1) - 6Si(Si + 1)] (2)

H ) -2J ∑
i,j

SiSj (3)
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cases the levels with a givenS are independent of the sets
of intermediate spins{S̃} ) S12S123,S1234,S12345 (S12 ) S1 +
S2, etc.) and are thus additionally degenerate according to
the numbern(S)of the possible sets{S̃} giving rise to a given
full spin S. The labeling of the states does depend on the
coupling scheme (that can be chosen in an alternative way),
but the degeneracy of theS multiplets remains the same.

In a general case of a spin ring, in particular for a spin
hexagon, the Kambe’s formula is inappropriate even ap-
proximately, so that the matrix of the exchange Hamiltonian,
eq 1, is to be diagonalized. This was understood long ago
(for a review, see the book by Gatteschi et al.2 and references
therein), and during the past years, efficient theoretical
approaches to the evaluation of the energy levels of spin
rings have been developed.11 In particular, six-membered

antiferromagnetic rings of different spins have been studied
in detail11a,b,hwithin the exact and approximate approaches.
To estimate the exchange parameters in Cu6 and Mn6, we
have calculated the energy pattern (eigenvalues ofH0 + H′)
by means of the MAGPACK software, a package to calculate
the energy levels, bulk magnetic properties, and inelastic
neutron scattering spectra of high nuclearity spin clusters,7

based on the use of the ITO technique.2,6,12,13 The energy
levels for the Cu6 and Mn6 clusters as functions of the full-
spin values are given in the left-hand parts of Figure 2a and
b for the case ofJ′ ) 0. The magnetic behavior investigated
by magnetic susceptibility measurements was unambiguously
shown5 to be ferromagnetic, so that the energy patterns in
Figure 2 correspond toJ > 0. The energy levels derived
from the Kambe’s formula, eq 2, are represented in the right
part of Figure 2a and b.

One can see that the levels within the “spherical” model
obey Lande’s rule and are substantially different from the

(11) (a) Waldmann, O.Phys. ReV. B 2002, 65, 024424/1-024424/13. (b)
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17, 5053-5057. (f) Waldmann, O.Europhys. Lett.2002, 57, 618-
619. (g) Schmidt, H.-J.; Schnack, J.; Luban, M.Europhys. Lett.2002,
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Figure 2. Energy levels for Cu6 (a) and for Mn6 (b) clusters in the first-neighbor coupling approximation. The additional multiplicities of spin states
(number of the levels with the sameS) are indicated in parentheses. Left: Energy pattern calculated with MAGPACK. Right: Energy pattern calculated
according to the Van Vleck formula. The energy pattern in the right side of b is scaled by 0.75. Dashed line represents the upper bound of the rotational band
(see text). For the sake of clarity, the levels have been shifted by a constant to get the same ground state energies in both energy patters.
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exact energy pattern in the following, which has severe
implications for the analysis of the magnetic data: (1) The
full gap of the exchange splitting,∆ ) E(Smin) - E(Smax), in
the “spherical” model exceeds the gap obtained in the exact
calculation (12J vs 8.6J for Cu6 and 240J vs 163J for Mn6;
note that the energy pattern in the right side of Figure 2b is
scaled by factor 0.75 for the sake of clarity). This feature
becomes intuitively evident even from a qualitative consid-
eration. In fact, the spherical Hamiltonian, eq 3 involves,
along with first-neighbor interactions (H0), all possible
(second- and third-neighbor) pairwise interactions (H′, etc.)
with the same coupling parameter overestimating the full
exchange energy. (2) The levels in the “spherical model”
are highly degenerate according to the numbern(S) of
possible sets of the intermediate spin values (within a given
coupling scheme) giving rise to a full spinS.

3. Symmetry Properties and Anisotropic Contributions

Point-symmetry assignment12,13 of spin multipletsn(S)-
D(S) shows that they correspond to the sets ofSΓ terms,
corresponding the irreducible representationsΓ(irreps) ofC6V

point group (a general approach is given in ref 12). For
example, using the approach described in ref 13, we get the
following correlation for the Cu6 ring:

One can see that the “accidentally” degenerate spin multiplets
in the spherical model comprise orbitally degenerate states
(irrepsE1 andE2 in C6V) and orbital singletsA1, A2, B1, B2.
For example, 9-fold degenerateS) 1 levels in the spherical
model involves three orbital singlets3A2, 23B2 and three
orbital doublets3E2 and 23E1. Only ferromagnetic ground
stateS ) 3 does not exhibit excessive degeneracy and is
represented by the orbital singlet7B2. “Accidental” degenera-
cies (arising from a more general symmetry of the isotropic
exchange Hamiltonian)12 are removed in the calculated exact
energy pattern (Figure 2). At the same time, the energy
pattern exhibits exact doubly degenerate levels (irrepsE1 and
E2), for example, the first and second (Smax - 1) level for
both Cu6 and Mn6, etc. These degeneracies arise from the
point symmetry of the system in the sense that they are
associated with the definite termsSΓof the systems and thus
cannot be removed by the remaining isotropic interactions
preserving hexagonal symmetry, for instance, by the next-
neighbor interactions or biquadratic exchange. It also should
be noted that the matrix of the HDVV Hamiltonian for Cu6

cluster (including also all interactions) can be blocked on a
symmetry-adapted basis and contains only two 2× 2
matrices corresponding 23B2 and 21A1 so that the eigen-
problem in this case has an analytical solution (that is not
given here). The dimensions of theSΓ blocks for Mn6 are

much higher so that a numerical solution in this case is
required. (3) The first excited level in the “spherical model”
is much higher than that obtained in the exact calculation.
Thus, for the Cu6 and Mn6 clusters the gaps∆2,3 ) E(2) -
E(3) and∆14,15 ) E(14) - E(15) in the spherical model are
6J and 30J, respectively, while the exact values areJ and
5J. Finally, an interesting similarity between theSmax - 1
sets of the levels is worth mentioning. One can see that the
S ) 2 stack for Cu6 consists of two doubletsE1, E2 and a
singletA1 separated by the gaps 2J andJ (Figure 2a), and at
the same time, theS) 14 stack in Mn6 containsE1, E2, and
A1 with the same ratio of the gaps that are five times larger,
10J and 5J.

The group theoretical assignment allows one to elucidate
the character of the anisotropy in the ground and excited
states of the systems under consideration, which exhibit
orbital degeneracy. The key issues can be illustrated by taking
the simpler case of a Cu6 hexagon as an example, for which
the ground term is represented by the orbital singlet7B2 and
the set of the excited levels withS) 2 involves two orbital
doublets5E1 and5E2. The ferromagnetic ground state for a
spin ring is the only state (all spins “up”) and proves to be
an orbital singlet (for example,7B2 for Cu6 hexagon). For
the orbital singlet 7B2, the orbital angular momentum
contribution is reduced and only a second-order spin-orbital
effect is present. The second-order spin-orbital interaction
in this case leads to a uniaxial zero-field splitting that can
be represented by the conventional Hamiltonian14-16

with Z alongC6 axis, and only the bilinear contribution is
taken into account.

Orbitally degenerate multiplets require inclusion of ad-
ditional anisotropic interactions. To define them, let us note
that the selection rules13 for the matrix elements of the purely
imaginary operatorL of the orbital angular momentum are
defined by the decomposition of the antisymmetric parts{
E1

2} and{E1
2} of the direct productsE1 × E1 andE2 × E2. In

C6V symmetry, {E1
2}) {E2

2}) A2, so that only theLZ

component (irrepA2) of L has non-vanishing matrix elements
within theE1 andE2 basis sets. This means that the5E1 and
5E2 terms are split by spin-orbital interaction and only the
λLZSZ part of spin-orbital couplingHSO is active. In the spin-
coupling scheme, the AS exchange interaction introduced
by Dzyaloshinsky and Moria17 (where Dij are the vector
parameters), eq 6

(14) Kahn, O.Molecular Magnetism; VCH: New York, 1993.
(15) Bǒca, R.Theoretical Foundations of Molecular Magnetism; Elsevi-

er: Amsterdam, 1999.
(16) (a) Bǒca, R.Coord. Chem. ReV. 1998, 173, 167-283. (b) Bǒca, R.

Coord. Chem. ReV. 2004, 248, 757-815.
(17) (a) Dzyaloshinskii, I. E.Zh. Exp. Teor. Fiz.1957, 32, 1547 [SoV. Phys.

JETP1957, 5, 1259]. (b) Moria, T.Phys. ReV. 1960, 120, 91.

D(3) f 7B2

5D(2) f 5A1 + 5E1 + 5E2

9D(1) f 3A2 + 23B2 + 3E2 + 23E1 (4)

5D(0) f 21A1 + 1B1 + 1E1

Hax ) D (SZ
2 - 1

3
S(S+ 1)) (5)

HAS ) ∑
ij

Dij[Si × Sj] (6)
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is equivalent to spin-orbital interaction inSΓ terms,12,13and
thus we arrive at the conclusion that the AS exchange appears
and only thez-component (normal part) of the AS exchange

operates within the5E1 and 5E2 bases and spits these
multiplets. When orbital degeneracy is present, the AS
exchange acts as a first-order effect with respect to the spin-
orbital interaction and for this reason, in general, exceeds
the zero-field term, eq 5, that appears as a second-order
effect15,16 and gives also nonzero contribution for all terms
with S g1, along with the AS exchange. It should be
underlined that in the case of orbitally degenerate multiplets
the conventional zero-field term, eq 5, plays a secondary tole.
Because of the above-mentioned similarity of theS) 2 stack
for Cu6 and theS) 14 stack in Mn6 the same conclusionis
validfor 29E1 and29E2 multiplets of Mn6. From the viewpoint
of symmetry, the role of the “in-plane” componentsof the
AS exchange, eq 8

can be understood by considering of the selection rules for
the off-diagonal matrix elements of theLX andLY components
(irrep E) of L that are defined by the decomposition of the
direct products (but not antisymmetric parts as in the case
so far discussed),Γ1 × Γ2, whereΓ1 andΓ2 are the irreps
corresponding to the orbital part of the exchange multiplets.
Additionally, spin-orbital mixing occurs, providing∆S )
0,1 (selection rule for the first rank spin tensor). For example,
in the Cu6 ring, the ground term7B2 is mixed by the in-
plane part of AS exchange only with the5E2 term from the
S) 2 stack (in fact,B2 × E2 ) E1(LX,LY)), while the mixing
of 7B2 with the second orbital doublet5E1 is forbidden (the
direct productB2 × E1 ) E2, that is, does not containE1-
(LX,LY)). Since normally the isotropic exchange is the leading
interaction, the mixing acts as a second-order perturbation
within eachSΓ multiplet and, in particular, contributes to
the zero-field splitting of the ground state7B2. At the same
time, the AS mixing modifies the AS exchange splitting in
the excited term5E2. The remaining multiplets can be
considered in the same way. Quite a similar observation of
the different role of the normal and in-plane components’
AS exchange has been made for the case of the triangular
vanadium moiety in V15 molecule.18 Symmetry consider-
ations show that this result seems to be common for the spin
rings with actual axial symmetry for which a Cn axis (n g
3) is present.

Recently, a very large AS exchange was evoked by
Solomon with co-workers19 in his study of the unusual
properties of tri-copper clusters. In view of the results of ref
19, one can expect significant AS exchange in the excited

states of Cu6 rings and significant second-order effects that
should contribute to the magnetization. Very strong isotropic
exchange has recently been found in cooper(II) hexanuclear
rings, in which one can also expect strong AS exchange.20

The second-order effects (zero-field splitting) in the triangular
Cu3 systems have recently been considered by Belinsky.21

Finally, let us illustrate the anisotropic properties of the
AS exchange by consideration of the excited exchange
multiplets exhibiting orbital degeneracy, for which a first-
order splitting is caused byHAS

||
. Figure 3 shows the

calculated splitting of the excited degenerate level5E1 of the
Cu6 cluster by the normal part of the AS exchange and the
Zeeman splitting in two principal directions of the applied
magnetic field, along the C6 axis and in the plane of the
hexagon. One can see that the normal part of AS exchange
splits 5E1 into five equally spaced doublets. Since the basis
E1 can be associated with the two functions with the
projectionML ) (1 of the orbital angular momentum the
basis of the doublets can labeled as|S MSML〉 ≡ |MSML〉 :
|MSML〉 ) |(2,(1〉, |(1,(1〉, |0,(1〉, |(1,-1〉, |(2,-1〉.

(18) (a) Tsukerblat, B.; Tarantul, A.; Mu¨ller, A. Phys. Lett. A 2006, 353,
48. (b) Tarantul, A.; Tsukerblat, B.; Mu¨ller, A. Inorg. Chem.2007,
46, 161-169.

(19) Yoon, J.; Mirica, L. M.; Stack, T. D. P.; Solomon, E. I.J. Am. Chem.
Soc. 2004, 126, 12586-12595.

(20) Mohamed, A. A.; Burini, A.; Galassi, R.; Paglialunga, D.; J. R. Gala´n-
Mascaro´s, J. R; Dunbar, K. R.; Fackler, J. P., Jr.Inorg. Chem. 2007,
46, 2348-2349.

(21) Belinsky, M. The optimization of the composition, structure and
properties of metals, oxides, composites, nano- and amorphous
materials.Proceedings of the Sixth Israeli-Russian Workshop; Israeli
Academy of Sciences: Jerusalem, 2007; pp. 98-116.

HAS
| ) ∑

ij

Dij
Z [Si × Sj]z (7)

HAS
⊥ ) ∑

ij

(Dij
X [Si × Sj]X + Dij

Y[Si × Sj]Y) (8)

Figure 3. Zero-field splitting of5E1 term by the AS exchange and Zeeman
splitting in the magnetic field applied along C6 axis (a) and in the plane of
hexagon (b).

D3d-Symmetric Polyoxotungstates

Inorganic Chemistry, Vol. 46, No. 21, 2007 8855



The doublets can be labeled by the values of the|MJ|
whereMJ ) MS + ML is the quantum number of the total
angular momentum projection that is a good quantum number
in the case of axial symmetry. The eigen-functions in the
MJ-basis are|MJ〉 ) |(3〉, |(2〉, |(1〉, |0〉(twice), |(1〉. With
the use of the Magpack software, these basis functions are
expressed in terms of the initial spin basis|S12 S123 S1234S12345

S M〉. For the 5E1 term, the HAS
||

term leads to five
equidistant doublets with energiesε(MSML) ) GMLMS. The
straighforward diagonalization ofHAS

||
gives the gapsG )

Dn/x3 andDn/x15 for two doublets in theS ) 2 stack of
Cu6 as shown in Figure 3a for5E1. For the sake of simplicity,
the Zeeman interaction is assumed to be isotropic, and only
the leading spin part is taken into account. Figure 3a shows
the linear Zeeman splitting of the doubletsG MLMS (
gâMSH in parallel (H|C6) field, theg-factors of the system
coinciding with g-factors of the constituent ions. It is
remarkable that the Zeeman sublevels cross atHcross) |G|/
gâ. For any in-plane direction, the field the energies at low
fields are quadratic in the field (second-order effect), while
in the limit of the strong field, one finds five double
degenerate sublevels,g â MSH, that are independent ofG
and simply coincide with those for spinS in absence of
anisotropic interactions. This can be understood as the effect
of reduction of the AS exchange by a strong field along the
hard axis of magnetization (in-plane direction). The levels
in this limit simply represent the Zeeman pattern correspond-
ing to the new quantization axis lying in the plane.
Consequently, theMS labels in Figure 3b are related to the
dashed levels and correspond to the in-plane axis of spin
quantization (rather than to theC6 axis as in Figure 3a). A
more detailed study of the consequences of the AS exchange
in EPR pattern will be given elsewhere.

4. Magnetic Susceptibility and Magnetization

The molar magnetization and magnetic susceptibility are
subsequently obtained with the use of the conventional
expressions15,16

The saturation values of the magnetization (Msat ) gS) as
functions of applied field, assuming ferromagnetic ground
statesS ) 3 and 15 for Cu6 and Mn6 clusters, allows us to
estimate effectiveg-factors that are 2.2 and 1.93 for Cu6 and
Mn6, respectively (see below). In the fitting of the experi-
mental data5 on magnetization versus field (at 1.8K), we
employ the so-called “giant-spin approximation”,2,6 assuming
that the ground states (S) 3 and 15) are well enough isolated
and neglecting the mixing of these states with the excited
ones through the anisotropic contributions. In fact, the gaps
∆2,3 and∆14,15 estimated with the best-fit parameters,J, are
35 (Cu6) and 2.75 cm-1 (Mn6) (see below), which indicates
that the excited levels are weakly populated even in the low-
field region. It is also noteworthy that as the applied field
increases, the levels become even more pronouncedly
isolated. As was demonstrated in the book by Gatteschi

et al.,2 the analysis of magnetization in a powder with a
simple conventionally accepted averaging formula,M ) (1/
3)M|| + (2/3)M⊥, can give an error in the dependenceM(H,T).
In view of this observation, we have made a least-square
analysis of the calculated magnetic susceptibilityM with the
use of the exact averaging based on integration over two
polar angles and also in a simple model. The mean square
error factorR is defined as usual, R) ∑(Mexp - Mcalcd)2/N
Mexp

2
, whereN is the number of the experimental points. In

the case under consideration, theD values obtained in simple
and exact models of powder averaging provide close results.
The calculated average magnetization versus field, for Cu6

(Figure 5a) shows good fit to the Brillouin function withg
) 2.2 (R ) 9.8 × 10-4), whereas for Mn6, the fit to the
Brillouin function (Figure 5b) is poor at intermediate fields
(R ) 0.026). Deviation of the magnetization at intermediate
fields, which can be attributed to magnetic anisotropy, has
been taken into account in the framework of the conventional
uniaxial zero-field splitting Hamiltonian,13-16 eq 5, that is
valid for spin multiplets in the absence of the orbital
degeneracy. This has largely improved the fit, reducingR
to 1.6× 10-4 for Cu6 and 9.0× 10-4 for Mn6, the influence
of the anisotropy being especially pronounced for Mn6. As
one can see from Figure 5b, the inclusion of the anisotropic
term dramatically changes the shape of magnetization versus

MR(H,T) ) NkT
∂lnZ
∂HR

øab ) NkT
∂

2lnZ
∂HR∂Hâ

(9)

Figure 4. Mean-square error as a function of the parameterJ for Cu6 (a)
and Mn6 (b) clusters.
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field curve for Mn6 and perfectly explains the occurrence of
a broad peculiar shoulder at intermediate fields. For Cu6,
the zero-field splitting parameterD, which yields the best
fit, is negative,D ) -0.23 cm-1, and differs somewhat from
that (D ) -0.127 cm-1) deduced from the analysis of the
EPR experiments,5 while for Mn6, we found a positiveD
that is 0.09 cm-1. It was noted in ref 5 that the observed
fine structure of the EPR pattern of Cu6 is not equidistant,
and the authors explained this observation by possible
importance of the next order contributions in the zero-field
splitting. This can explain also the difference between the
so far obtained value ofD by fitting of magnetization and
that found from EPR in ref 5. High-order terms contain new
adjustable parameters that would result in the excessive
flexibility of the theoretical model. More detailed EPR data
(for example, angular dependence) in conjunction with a
more full theoretical model are expected to precisely generate
theD parameter in the Cu6 system. The effective valuesDS2

of the anisotropy parameters in Mn6 are not small enough
to fully justify the use of the giant spin model, so that, for
a full description of Mn6, one should go beyond limitations
of this model.

To reduce the number of the adjustable parameters, we
will use the values of theg-factors obtained in the fit of

magnetization to fit the data on magnetic susceptibility.
Experimental data on the molar magnetic susceptibility (øm

andømT) for polycrystalline samples at low magnetic fields
(0.1 and 0.05 T for Cu6 and Mn6, respectively) are reported
in ref 5. A least-square analysis of the calculated magnetic
susceptibilityø with a simple averaging formulaø ) (1/
3)ø| + (2/3)ø∧ yields the best fit to the experimental results
thus, providing values for the exchange parameters. We
found that, for Cu6, J ) 35 cm-1 andJ′ ) 0 with an error
factor ofR ) 1.5 × 10-5 and, for Mn6, J ) 0.55 cm-1 and
J′ ) 0.01 cm-1 with R ) 2.3 × 10-3. Figure 3 shows that
the error factorRas a function of the parameterJ has a deep
minimum, while the numerical analysis shows that the results
are less stable with respect toJ′. One can conclude that the
stability of the fit is low; the fit does not allow one to
accurately estimateJ′, but the analysis shows that this
parameter is definitely small. The temperature dependence
of the magnetic susceptibility shows a very good fit of the
calculated curves to the experimental results as shown in
Figure 4. Since the parameterJ′ is negligible for Cu6 and
very small for Mn6, one can compare the values ofJ obtained
in our fit with those reported in ref 5, namely, 8.82 cm-1

for Cu6 and 0.14 cm-1 for Mn6. One can see that the
theoretical model for a spin hexagon based on the Kambe-

Figure 5. Temperature dependence of the magnetic susceptibility for Cu6

(a) and Mn6 (b) clusters. Circles represent the experimental values derived
from ref 5, and the solid lines represent the calculated values for the best-
fit parameters, see text.

Figure 6. Field dependence of magnetization (T ) 1.8 K) for Cu6 (a) and
Mn6 (b) clusters. Circles represent the experimental values derived from
ref 5, and the solid lines represent the calculated values for the best fit
parameters (see text); the dotted lines represent the Brillouin function.
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Van Vleck equation results in an essential underestimation
of J. This follows from an overestimation of the gaps in the
energy pattern in this model, in particular, the gap between
the ground and first excited level (Figure 2).

One can see that the HDVV model supplemented by the
relatively small anisotropic terms provides a good description
of the spin hexagons Cu6 and Mn6 in complex POMs, while
application of a simple expression for spin levels-JS(S+1)
gives incorrect estimation for the exchange parameters. It
was recently demonstrated (Schmidt et al.11c and Schnack
et al.)11d,e that in many HDVV systems (as discussed by
Waldmann11f and Schmidt et al.)11g the energy pattern is
approximately bounded by two parabolic curves (the upper
bound for Mn6 is shown in Figure 2) so that the low lying
levels involving all spin values form so-called rotational
band,E(S) ) -JeffS(S + 1) . Under some assumptions, the
interrelation between the real and effective parameters can
be found (see refs 11 and 2). The case of a ring with the
first-neighbor coupling is favorable for the rotational band
approximation11 (especially for high spin ions), although in
the case of a ferromagnetic ring the limitations are more
severe. Nevertheless for the Mn6 ring of (n-BuNH3)12-
[(MnCl)6(SbW9O33)2]‚6H2O with a relatively weak ferro-
magnetic exchange the two low-lying levels withS ) 12
and the excited levelS ) 14 are very close in energy, and
the remaining levels are not well isolated from the lower
rotational band (Figure 2). These levels are well populated
at T > 5 K so that for a reliable description of the
experimental data in the case under consideration the whole
set of the levels is to be taken into account.

Finally, although the spin dependences of the energy levels
in the rotational band approximation and in the spherical
model are the same, giving rise to a Lande’ rule of intervals,
the multiplicities of degeneracy of the levels are different.
The former takes into account only a part of the full spectrum

(possessing a specific set of degenerate levels) and uses an
effectiveJ parameter (that is different from the first-neighbor
one), while the spherical model deals with a true exchange
and results in the high accidental degeneracy as discussed.
For these reasons, application of spherical model cannot be
justified in terms of the rotational band approximation.

4. Summary

In this paper, we have examined the spin levels and
magnetic properties of two POMs, two novel polyoxotung-
states, (n-BuNH3)12[(CuCl)6-(AsW9O33)2]‚6H2O and (n-
BuNH3)12[(MnCl)6(SbW9O33)2]‚6H2O, containing Cu6

12+ and
Mn6

12+ hexagons. We have demonstrated the inapplicability
of the Kambe-Van Vleck formula to a spin hexagon and
successfully reproduced the experimental results on magnetic
susceptibility and magnetization on the basis of the exact
diagonalization of the HDVV Hamiltonian. The best fitting
parameters exceed substantially those obtained within the
“spherical model”. The results imply the importance of the
uniaxial anisotropy which is shown to be especially pro-
nounced for the Mn6

12+ cluster. We also discuss the group
theoretical assignment of the exchange multiplets, their
degeneracies, and symmetry rules for the AS exchange in
the ground and excited states of the spin-rings. We also show
how the symmetry rules are related to the anisotropic
interactions and, in this view, analyze the manifestations of
the AS exchange in orbitally degenerate multiplets. We
underline also different roles of the normal and in-plane
components of the AS exchange in the spin ring with an
axial symmetry.
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